Pyidp3 Documentation
Release 0.0.5

Simon Vandevelde

May 31, 2022

Contents:

1 Pyidp3 features

1.1 Existing features from Pyidp e e
1.2 Added features in Pyidp3 L
1.3 Added QOL in Pyidp3:. e e
1.4 Fixed bugs: o o e e e
2 Basic Tutorial
2.1 Requirements o v i i e e e e e e e e e e e e e e e e e e
2.2 Tutorialo e e e e e e e e e e e e
3 Examples using the Pyidp3 API
3.1 simple_inference Ll e e e e e
3.2 harder_Inference i e e e e e e e e e
3.3 definition_test e e e e e e
34 constructed_from e e
3.5 initial_group_assign L. e e e
3.6 initial_group_assign_plus oL e e e e e e
3.7 further_group_assign e e e e e
3.8 sudoku ... e
3.9 MASYU .« v vt e e e e e e e e e e e e e e e e e

4 Porting of Pyidp to Pyidp3

5 The Pyidp3 API reference

5.1 ThetypedIDP submodule:
5.2 Theidpobjects submodule: e e e e
5.3 Theidp_py_syntax submodule: L e e e e
5.4 Theidp_parse_outsubmodule: L. L e e e
Python Module Index
Index

A~ B W WW

2

27

33
33
39
40
41

43

45

Pyidp3 Documentation, Release 0.0.5

This documentation covers everything in the Pyidp3 module.
This is a Python3 port of Joost Vennekens Pyidp.

The Pyidp3 module is an API between Python3 and the IDP system. In short, IDP is a Knowledge Base System (KBS)
using the FO(.) language. FO(.) is standard First-Order logic, but expanded. See the IDP website for more. A KBS
is a system that stores all it’s knowledge in a knowledge base, and then supports different inference methods to apply
on the knowledge. It’s programmed in a declarative manner. More on programming the IDP system and FO(.) can be
found here.

Pyidp3 will try to bridge the gap between IDP (which is programmed declaratively) and Python (which is programmed
imperatively). It works in both directions: the user can supply data in Pythonic form to Pyidp3, which will then be
converted to IDP form and given to the IDP system. When the IDP system is done infering, Pyidp3 will process it’s
output and translate this back into Pythonic form.

Pyidp3 The IDP-System

o - .-i

A list of all the features can be found at: Pyidp3 features.

More information on the porting of Pyidp to Pyidp3 can be found at: Porting of Pyidp to Pyidp3.

This submodule is part of my master’s thesis. Due to timeconstraints, this module is far from perfect. I used it to build
an application to assign students to groups, based on the IDP system. More on that can be found here.

Contents: 1

https://gitlab.com/Salt_Factory/pyidp3
https://bitbucket.org/joostv/pyidp/src
https://www.python.org/
https://dtai.cs.kuleuven.be/software/idp
https://dtai.cs.kuleuven.be/krr/files/TutorialIDP.pdf
https://gitlab.com/Salt_Factory/idp_group_assign_application

Pyidp3 Documentation, Release 0.0.5

2 Contents:

CHAPTER 1

Pyidp3 features

Because Pyidp3 is a port of Pyidp, not all features were added by me.

1.1 EXxisting features from Pyidp

Here is the list of features that were already in Joost Vennekens’ Pyidp (and were merely ported by me):
* Parsing Python to IDP, and from IDP to Python.

* Converting Pythonic to IDP-form. *(This is no longer supported in Pyidp3. The code is there, so it might work
but I didn’t do any active development on it.)

* Support for Type, Predicate, Function, Constant and Definitions.
* Support for vocabulary, theory and structure.

* Basic model expansion.

1.2 Added features in Pyidp3

Here is the list of features added in Pyidp3:
¢ Sphinx documentation (you’re reading it!).
* Documentation throughout the code, to make it more readable.
* Support for adding the Term block, as a subclass of Block.
* Support for constructed_from keyword in a Type.
* Support for isa keyword in a Type.
* Model expansion is now done by calling .model_expand().

* Implemented a way to minimize, by adding the .minimize(term) method.

Pyidp3 Documentation, Release 0.0.5

* Implemented a way to SATcheck, by adding the .sat_check() method.
e Users can now also set IDP options (All options! Most of them haven’t been tested though).

* The model_expand and minimize methods are now able to return multiple solutions, instead of only one.

The IDP object now has a compare method to compare two enumerables and list the differences (currently only
for dictionaries).

1.3 Added QOL in Pyidp3:

Along with features, some ‘Quality-Of-Life’ related functionalities were added to Pyidp3. These are all features that
aren’t completely necessary, but are just nice to have (and improved my QOL as the maintainer of this module).

» Changed the structure of the .py files to an actual module.

When porting I deleted the __init__.py file because I didn’t know what it did. I imported all the submodules relatively,
which was a massive pain.

* Added PEPS8 conformity.

This is mostly codelines being longer than 79 characters, or forgetting whitespace. These don’t break functionality,
but it makes everything harder to read!

* Automated testing!

Using GitLab’s free CI and a custom-made Dockerfile, I was able to automate my testing. Thanks to this I was able to
find a lot of bugs I had written before I pulled my code into the masterbranch. Thanks GitLab!

* Written a .idp to .py converter.

During my testing I needed a lot of testfiles, and creating them all by hand took a while. Which is why I tried my best
at creating a .idp to .py converter. As of right now it mostly works, there’s just some minor kinks I need to get out
before I can call it actually done.

* Pyidp3 doesn’t add a ‘.’ to a constraint that already contains one at the end.

s

Before I constantly forgot that Pyidp3 automatically adds a ‘. at the end of a constraint. Which means that if I
manually added a ‘., T would have two dots at the end of the line, and IDP wouldn’t be able to interpret it. Now it
checks whether it needs to add a ‘.’ before actually adding one.

1.4 Fixed bugs:

The original Pyidp version also had some bugs. However, I do suspect most of them were introduced by me when I
first ported Pyidp to Pyidp3. Still, here’s a list of all the bugs that were fixed.

* Fixed a bug in the Constraint method, where it didn’t use self.know but appended directly to itself.

* IDPIntTypes are no longer generated number by number.

foo = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} //old
foo = {0..10} //new

 ‘string’ wasn’t being recognized as a possible type.

* String had to be supplied with extra quotation marks.

Type (example, {1: '""first"', 2: '""second"'})

4 Chapter 1. Pyidp3 features

Pyidp3 Documentation, Release 0.0.5

would be needed to translate to

’example = {1->"first"; 2->"second"}

Now this is no longer needed, and leaving the outer quotation marks is possible.

’Type(example, {l: "first", 2: "second"})

* Definitions are no longer formed incorrectly.
* Fixed the CI testing platform not having support for unicode utf-8 characters.

* Constants can now get a value:

’Constant("Apple", 5)

will now result in:

’Apple: 5

in the theory.

* ‘nat’ wasn’t begin recognized as a possible type.

1.4. Fixed bugs: 5

Pyidp3 Documentation, Release 0.0.5

6 Chapter 1. Pyidp3 features

CHAPTER 2

Basic Tutorial

Because this module can be somewhat daunting at times, here is a (hopefully) comprehensible tutorial of all that it has
to offer.

If this still isn’t enough, or it’s missing something, let me know. Until then, you could read through the Examples
using the Pyidp3 API to see if it’s covered there. And if it isn’t, check out the The Pyidp3 API reference.

2.1 Requirements

IDP:

The IDP system needs to be installed somewhere on your system. To do this, go to this link, and download the offline
version.

Open it using a filemanager or by using the “tar” command in terminal.

tar -xf ipd-version-tar.gz

This will extract the files from the tarball archive.

You can move the idp folder to anywhere you like, as long as the permissions are correct. I usually place my personal
installation in my $HOME folder.

Pyidp3: Next up we need the Pyidp3 module. This can be done easily by using the following command:

python3 pip install pyidp3

If you used this command, proceed to the next step.
You could also download the sourcecode over at gitlab and clone it to your machine.

Next, you can run

python3 setup.py install

to install the package globally.

https://dtai.cs.kuleuven.be/software/idp/try
https://gitlab.com/Salt_Factory/pyidp3

Pyidp3 Documentation, Release 0.0.5

2.2 Tutorial

With the requirements done, let’s start simple: to begin programming using Pyidp3 you need to import it. This is done
as such:

’from pyidp3.typedIDP import IDP

As a user, all you need is this import. The IDP object is the most top-level object there is. It will allow you to do
everything you need to do.

This is a list of what the IDP object offers:
¢ Constant
* Constraint
¢ Define
¢ Function
* Predicate
* Type
* check_sat
* minimize
* model_expand

Say for instance, we’d like implement the following .idp file as a .py file, to be used in an application later. This
example solves a simple letterpuzzle, where we try to assign values to each letter, so “Al + BA = CDE”. No two letters
can have the same value, none of the letters can be zero and all vowels need to be an even number, all consonants
uneven.

vocabulary V {
type Decimal isa int
A: Decimal

B: Decimal
C: Decimal
I: Decimal
D: Decimal
E: Decimal

Even (Decimal)

}

structure S : V {
Decimal = {0..9}
Even = {0;2;4;6;8;}

}

theory T : V {

A~B&A~=~C&A~T1G&A~DS &A~ESU &B~=C¢&B~=1
& B~DS&B~E&C~1I246&C~DS®S&C~ZESE&I~=DSETI ~=E
& D ~= E.

A ~= 0

B ~= 0

CcC ~=0

Even (A)

Even (E)

(continues on next page)

8 Chapter 2. Basic Tutorial

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

Even (I) .

~Even (B) .
~Even (C) .
~Even (D) .

I + A + 10%A + 10B = E + 10 = D + 100 = C.
}
procedure main () {

stdoptions.nbmodels = 3

printmodels (modelexpand (T, S))

First of all, we need to instantiate our IDP object. This can be done as follows:

idp = IDP('path/to/IDP/exec')

Make sure to set the path to your IDP executable, or it won’t work.

Next up, we’ll add the type Decimal.

idp.Type ("Decimal", (0, 9))

Normally, when the Type uses the isa keyword, we’d have to explicitly tell this to the Type() method. But, by default
Pyidp3 will find if it’s an int and add this automatically.

Now we should add the constants. This is also fairly easy:

idp.Constant Decimal™"
idp.Constant
idp.Constant

(

(

(
idp.Constant ("

(

(

n

Decimal"

Decimal"
idp.Constant (" Decimal"

A)
B)
"C: Decimal")
I)
D)
idp.Constant ("E)

Decimal"

Now for the Predicate Even, where we define what numbers are even.

idp.Predicate ("Even (Decimal)", [0, 2, 4, 6, 81])

All that’s left now are the constraints in our theory. Because these are already in their IDP form, we need to set the
last variable to True. These are also fairly easy to create, but take some time to type out:

No two letters can be the same.

idp.Constraint("A ~=B & A ~=C & A ~=1 & A ~D & A ~=E & B ~=C & B ~=1
& B~D&¢B~E&C~TI&C~DSOS&C~ZES E&I~DSETI ~=E
& D ~=E.", True)

No letter can be zero.
idp.Constraint ("A ~= 0.", True

)
idp.Constraint ("B ~= 0.", True)
idp.Constraint ("C ~= 0.", True)
idp.Constraint ("I ~= 0.", True)
idp.Constraint ("D ~= 0.", True)
idp.Constraint ("E ~= 0.", True)

Vowels have to be an even number.
idp.Constraint ("Even (A) .", True)

(continues on next page)

2.2. Tutorial 9

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

idp.Constraint ("Even (E).", True)
idp.Constraint ("Even (I).", True)

Consonants have to be an uneven number.

idp.Constraint ("~Even (B) .", True)
idp.Constraint ("~Even (C).", True)
idp.Constraint ("~Even (D) .", True)

The formula to solve.
idp.Constraint ("I + A + 10xA + 10%«B = E + 10 = D + 100 = C.", True)
idp.Constraint ("satisfiable ()", True)

Note how we add satisfiable() as a constraint: otherwise IDP might return models that aren’t satisfiable. This has it’s
applications, but for now we only want models that are satisfiable.

But say we’d like to extend this puzzle, with more letters and a harder to solve formula. This would be a pain, because
for each n’th letter we’d have to add n-1 + 1 + 1 constraints. This is where the power of Pyidp3 (and Python) comes
in. Because this is Python, we could also write something along the lines of:

idp.Type ("Decimal", (0,9))
idp.Predicate ("Even (Decimal)", [0, 2, 4, 6, 81])

even_letters = ['A', 'E', 'I']
uneven_letters = ['B', 'C', 'D']
letters = even_letters + uneven_letters
for i, letter in enumerate (letters):
idp.Constant (letter+": Decimal") # Define a type for every letter.
for j, letter2 in enumerate(letters): # Iterate over all the letters again
if i < j and letter != letter2: # No letters can have the same value
idp.Constraint (letter + " ~= " + letter2)

if letter in even_letters:

idp.Constraint ("Even (" + letter + ")")
else:

idp.Constraint ("~Even (" + letter + ")")
idp.Constraint (letter + " ~= 0")

idp.Constraint ("I + A + 10xA + 10+«B = E + 10 = D + 100 = C.", True)
idp.Constraint ("satisfiable ()", True)

Now if we want to add letters, all we need to do is append them to either the even_letters list or the uneven_letters list,
and Pyidp3 will sort out the rest. In other words, our implementation is a lot more scalable than a direct implementation
in IDP.

Last but not least, we still need to model expand! In the main block, stdoptions.nbmodels is set to three, after which it
model expands. This can be done like so:

idp.nbmodels = 3
solutions = idp.model_expand()

print ("Total amount of solutions:", len(solutions))
for i, sol in solutions:
print ("Solution ". format (i), sol)

Every option in the IDP system can be used by giving a value to IDP.optionname. For a list of these options, see the

10 Chapter 2. Basic Tutorial

Pyidp3 Documentation, Release 0.0.5

usermanual. One thing to note however, is that all the verbosityoptions need to be used as IDP.verbosity_optionname.

When there are multiple solutions and a lot of data, it can sometimes be hard to see the difference between two
solutions. To help remedy this, you could use the compare function in the IDP class. Although currently, this only
works on functions.

This is just the tip of the iceberg, but currently I don’t have the time to add more to this tutorial. Luckily, there’s a

whole bunch of examplefiles you can read and try to reverse-engineer from. These can be found here: Examples using
the Pyidp3 API.

2.2. Tutorial 11

Pyidp3 Documentation, Release 0.0.5

12 Chapter 2. Basic Tutorial

CHAPTER 3

Examples using the Pyidp3 API

All of these examples were made to be used in my CI testing pipeline. For each of the examples, I list up what elements
are in it in case you’re looking for an example of something specific.

3.1 simple_inference

As the title says, this is a simple inference test. Contains:
* nbmodels and xdb options
¢ Defining constants without value or type
e Constraint
* Satchecking
* Model expanding

#!/usr/bin/python3

mmwn

This is a very simple and small test.

If this test fails, there's something extremely wrong.

It defines 3 variables, that each are either True or False.
mmn

from pathlib import Path

from pyidp3.typedIDP import IDP

home = str (Path.home())

idp = IDP (home+"/idp/usr/local/bin/idp")
idp.nbmodels = 2

idp.xsb = "true"

idp.Constant ("P")

(continues on next page)

13

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

idp.Constant ("Q")
idp.Constant ("R")

idp.Constraint (" (P => Q) <=> (P <= R).", True)
idp.Constraint ("satisfiable().", True)

idp.check_sat ()
idp.model_expand ()

3.2 harder_inference

This is a bit tougher than the previous example. Contains:
* Type with a range
 Constant with type, no value
* Constraint
* Predicate
* Satchecking
* Model expanding

#!/usr/bin/python3

mown

This is a fairly simple test, it just adds more constants and constraints.

The generated IDP file will have 6 letters (each an int),

which have some constraints (A, E and I need to be even numbers,

while B, C and D need to be uneven).
A, B and C also can't be zero.
No two letters can be the same number.

The following puzzle needs to be solved:
AT
BA

Or in other terms: AI + BA = CDE

mmwn

from pathlib import Path
from pyidp3.typedIDP import =

home = str (Path.home ())
idp = IDP (home+"/idp/usr/local/bin/idp")

Define the range of numbers
idp.Type ("Decimal", (0, 9))

Define the letters

(continues on next page)

14 Chapter 3. Examples using the Pyidp3 API

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

letters = ['A', 'B', 'C', 'T', 'D', 'E']
even_letters = ['A', 'I', 'E']
for letter in letters:

idp.Constant (letter+": Decimal")

for letter2 in letters:

if letter == letter2:
continue
idp.Constraint (letter + " ~= " + letter2, True)
if letter in even_letters:
idp.Constraint ("Even (" + letter + ")", True)
else:
idp.Constraint ("~Even (" + letter + ")", True)

Define the Even numbers
idp.Predicate ("Even (Decimal)", [0, 2, 4, 6, 81)

No two letters can have the same value

idp.Constraint ("A ~= B & A ~=C & A ~= 1 & A ~=D & A ~=E & B ~=C & B ~= 1"
"¢« B~=~D&B~=E&C~T1%C~DSUS§&C~=ESZ &TI~=D &"
"I ~E &D ~=E", True)

idp.Constraint ("I + A + 10%«A + 10«B = E + 10 = D + 100 » C", True)

idp.check_sat ()
idp.model_expand()

3.3 definition_test

This is a graphsolver with a Define in it. Other than that, nothing special going on. Contains:
* Type
e Predicate, with and without value
* Define
* Satchecking

* Modelexpansion

#!/usr/bin/python3

mmwn

This testfile is a graph solver.
Given a set of edges, it finds out what nodes are connected.
To do this is uses a definition consisting of two rules.

mmwn

from pathlib import Path
from pyidp3.typedIDP import =

home = str (Path.home())

(continues on next page)

3.3. definition_test 15

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

idp = IDP (home+"/idp/usr/local/bin/idp")

Define Node, Edge and Connected

nodelist = ['A', 'B', 'C', 'D', 'E']

idp.Type ("Node", nodelist)

idp.Predicate ("Edge (Node, Node)", ["A,B", "A,C", "B,E", "C,D", "C,E", "D,E",
"E,B"])

idp.Predicate ("Connected (Node, Node)")

idp.Define ("!x[Node] y[Node]: Connected(x,y) <- Edge(y,x). \n"
"!x[Node] y[Node] z[Node]: Connected(x,y) "
"<- Connected(x,z) & Connected(z,y)", True)

idp.check_sat ()
idp.model_expand/()

3.4 constructed_from

This file was mainly made to test the constructed from keyword. It contains:
* Type, with constructed from
e Predicate, with value
» Constraint
* Satchecking

* Modelexpansion

#!/usr/bin/python3

mmn

Tests for "constructed_ from".

This .idp file can only work when "constructed from" works.
from pathlib import Path

from pyidp3.typedIDP import =

home = str (Path.home())
idp = IDP (home+"/idp/usr/local/bin/idp")

days_of_the_week = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday"]

idp.Type ("Day", days_of_the_week, constructed_from=True)

idp.Predicate ("Weekend (Day)", ["Saturday", "Sunday"])

idp.Constant ("Easter: Day")

idp.Constraint ("Weekend (Easter)", True)
idp.Constraint ("Easter ~= Saturday", True)

idp.check_sat ()

(continues on next page)

16 Chapter 3. Examples using the Pyidp3 API

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

idp.model_expand()

3.5 initial_group_assign

This file is part of my master’s thesis. It’s a simplified version of my initial group assign, where the IDP-system tries
to assign students to groups as best as it can. It tries to minimize a term “Totaal”. This currently isn’t in English, for
which I’'m sorry.

It contains:
¢ mxtimeout option
¢ Types, with lists as values
* Predicate
* Function
e Constant
e Define
* Constraint
* Satchecking
¢ Modelexpansion

* Minimization, using the Totaal term.

#!/usr/bin/python3

mmwn

Testfile to test 1if the initial solution to our problem still works as it
should be.

It minimizes, and then it modelexpands.

mmwumn

from pathlib import Path

from pyidp3.typedIDP import =

home = str (Path.home())
idp = IDP (home+"/idp/usr/local/bin/idp")
idp.mxtimeout = 10

WoonDict = {1: 87, 2: 98, 3: 80, 4: 80, 5: 83, 6: 88, 7: 90, 8: 86, 9: 80, 10:
53, 11:. 98, 12: 57, 13: 86, 14: 82, 15: 98, 16: 83, 17: 15, 18: 88,
19: 22, 20: 78, 21: 80, 22: 86, 23: 27, 24: 57, 25: 84}

{1. 2, 2: 1, 3: 2, 4: 2, 5: 2, 6: 2, 7: 2, 8: 2, 9: 2, 10: 2, 11: 1,
12: 2, 13:. 2, 14: 2, 15: 1, 16: 2, 17: 2, 18: 1, 19: 2, 20: 1, 21:
2, 22: 2, 23: 2, 24: 2, 25: 2}

ZoneDict

idp.Type ("Student", list (range(l, 26)))
idp.Type ("Getal", list (range (int (1000000))))
idp.Type ("Postcode", list(range (0, 100)))

(continues on next page)

3.5. initial_group_assign 17

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

idp.Type ("Zone", list (range (0, 10)))
idp.Predicate ("Samen (Student, Student) ")
idp.Predicate ("VolSamen (Student, Student)")
idp.Function ("Woont (Student) : Postcode", WoonDict)
idp.Function ("WoontZone (Student) : Zone", ZoneDict)
idp.Predicate ("Wortel (Student) ™)
idp.Predicate ("Blad (Student)")
idp.Function ("Aant (Student) : Getal™)
idp.Constant ("SamenSchool: Getal")
idp.Constant ("Afstand: Getal")
idp.Constant ("UitZone: Getal™)
idp.Constant ("Totaal: Getal")
idp.Define ("Wortel (x) <- x < min{y[Student]: Samen(y,x):y}.", True)
idp.Define ("Blad(x) <- ~Wortel (x).", True)
idp.Constraint ("#{x[Student]: Wortel(x)} = 5", True)
idp.Constraint ("!x[Student]: Blad(x) <=> ?y[Student]: Wortel(y) & Samen (y,x)",
True)
idp.Constraint ("!x[Student]: Aant (x) = #{y[Student]: Samen(x,y) | Samen(y,x)}",
True)
idp.Constraint ("!x[Student]: Wortel (x) <=> 4 =< Aant (x) =< 6", True)
idp.Constraint ("!x[Student]: Blad(x) <=> Aant(x) = 1", True)
idp.Constraint ("!x[Student] y[Student]: Samen (x,y) => Wortel(x) & Blad(y)",
True)
idp.Define ("!x[Student] y[Student] z[Student]: VolSamen(y,z) <- Wortel(x) & y"
" < z & Samen(x,y) & Samen(x,z).\n"
"Ix[Student] y[Student]: VolSamen (x,y) <- Wortel(x) & Samen(x,y).",
True)
idp.Constraint ("Afstand = sum{x[Student] y[Student]: x < y & VolSamen (x,y) &"
" WoontZone (x) = WoontZone (y): abs (Woont (x) - Woont(y))}", True)
idp.Constraint ("UitZone = #{x[Student] y[Student]: x < y & VolSamen (x,y) &"

" WoontZone (x)
idp.Constraint ("Totaal = Afstand
idp.check_sat ()
idp.model_expand()
sols = idp.minimize ("Totaal™)

for sol in sols:
print (sol)
if sol['satisfiable']:
for x in sol['Samen']:
print (x)

~= WoontZone (y)

}", True)

+ UitZone * 100", True)

18

Chapter 3. Examples using the Pyidp3 API

Pyidp3 Documentation, Release 0.0.5

3.6 initial_group_assign_plus

This file is an expanded version of the previous, where schools are taken into account.
It contains:

* mxtimeout and nbmodels option

* Types, with lists as values

¢ Predicate

* Function

* Constant

* Define

* Constraint

* Satchecking

* Modelexpansion

* Minimization, using the Totaal term.

#!/usr/bin/python3

mmwn

Testfile that checks whether ISSUE-1 (the {x..y} in structs) is still valid.
from pathlib import Path
from pyidp3.typedIDP import x

home = str (Path.home ())

idp = IDP (home+"/idp/usr/local/bin/idp")
idp.mxtimeout = 10

idp.nbmodels = 5

WoonDict = {1: 87, 2: 98, 3: 80, 4: 80, 5: 83, 6: 88, 7: 90, 8: 86, 9: 80, 10:
53, 11:. 98, 12: 57, 13: 86, 14: 82, 15: 98, 16: 83, 17: 15, 18: 88,
19: 22, 20: 78, 21: 80, 22: 86, 23: 27, 24: 57, 25: 84}

zoneDict = {1: 2, 2: 1, 3: 2, 4: 2, 5: 2, 6: 2, 7: 2, 8: 2, 9: 2, 10: 2, 11: 1,
12: 2, 13: 2, 14: 2, 15: 1, 16: 2, 17: 2, 18: 1, 19: 2, 20: 1, 21:
2, 22: 2, 23: 2, 24: 2, 25: 2}

SchoolDict = {1: "GO! atheneum Anderlecht",

2: "KONINKLIJK ATHENEUM KOEKELBERG",

3: "TSM-Bovenbouw"', 4: '"TSM-Bovenbouw",

5: "PTS, Provinciale Scholen voor Tuinbouw en Techniek",

6: "Onze-Lieve-Vrouw-Presentatie", 7: "Sint-Ludgardisschool",
8: "Mater Salvatorisinstituut", 9: "Scheppersinstituut",

10: "Sint-Gabriélcollege", 11: "Scheppersinstituut",

12: "Sint-Norbertusinstituut 2", 13: "Ursulinen Mechelen 1",

14: "College Hagelstein 2", 15: "Scheppersinstituut",
16: "TSM-Bovenbouw", 17: "TOEKOMSTONDERWIJS HOBOKEN",

18: "Gemeentelijk Technisch Instituut",
19: "Heilig Hart - Bovenbouw 1",
20: "Gemeentelijke Technische en Beroepsschool",

21: "GO! Busleyden Atheneum-campus Pitzemburg",
22: "College Hagelstein 2",

(continues on next page)

3.6. initial_group_assign_plus 19

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

idp.
idp.
idp.
idp.

idp
idp

idp.
.Function ("WoontZone (Student) : Zone", ZoneDict)
.Function ("School (Student): string", SchoolDict)

idp
idp
idp
idp
idp

idp.
idp.
idp.
idp.

idp
idp

idp.
idp.

idp.
idp.

idp.
idp.

idp

idp.
idp.

idp.

idp.

23: "Kardinaal van Roey-Instituut ASO",
24: "Sint-Gummaruscollege", 25: "GO! atheneum Boom"}

Type ("Student", (1, 25))
Type ("Getal", (0, 10000000))
Type ("Postcode", (0, 100))
Type ("Zone", (0, 10))

.Predicate ("Samen (Student, Student) ")
.Predicate ("VolSamen (Student, Student)")

Function ("Woont (Student) : Postcode", WoonDict)

.Predicate ("Wortel (Student) ™)
.Predicate ("Blad (Student)")
.Function ("Aant (Student) : Getal")

Constant ("SamenSchool: Getal")

Constant ("Afstand: Getal™)

Constant ("UitZone: Getal")

Constant ("Totaal: Getal")

.Define ("Wortel (x) <- x < min{y[Student]: Samen(y,x):y}.", True)

.Define("Blad(x) <- ~Wortel(x).", True)

Constraint ("#{x[Student]: Wortel(x)} = 5", True)

Constraint (" !x[Student]: Blad(x) <=> ?y[Student]: Wortel(y) & Samen(y,x)",
True)

Constraint ("!x[Student]: Aant (x) = #{y[Student]: Samen(x,y) | Samen(y,x)}",
True)

Constraint ("!x[Student]: Wortel (x) <=> 4 =< Aant (x) =< 6", True)

Constraint ("!x[Student]: Blad(x) <=> Aant(x) = 1", True)

Constraint ("!x[Student] y[Student]: Samen (x,y) => Wortel (x) & Blad(y)",
True)

.Define("!x[Student] y[Student] z[Student]: VolSamen(y,z) <- Wortel(x) & y"

" < z & Samen (x,y) & Samen(x,z).\n"
"Ix[Student] y[Student]: VolSamen(x,y) <- Wortel(x) & Samen(x,vy).",

True)
Constraint ("SamenSchool = #{x[Student] y[Student]: x < y & VolSamen (x,vy)"
"& School (x) ~= School(y)}", True)
Constraint ("Afstand = sum{x[Student] y[Student]: x < y & VolSamen (x,y) &"
" WoontZone (x) = WoontZone(y): abs (Woont (x) - Woont(y))}", True)
Constraint ("UitZone = #{x[Student] y[Student]: x < y & VolSamen (x,y) &"
" WoontZone (x) ~= WoontZone(y) }", True)

Constraint ("Totaal = Afstand + UitZone x 100 + SamenSchool*100", True)

solutions = idp.model_expand /()
solutions = idp.minimize ("Totaal")
idp.check_sat ()
print ("{:d} solutions!".format (len(solutions)))
(continues on next page)
20 Chapter 3. Examples using the Pyidp3 API

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

for index, sol in enumerate (solutions):
if sol['satisfiable']:
print ("Sol :".format (index))
for x in sol['Samen']:
print ("\t', x)
else:
continue

3.7 further_group_assign

This is the other part of my master’s thesis. Here we try to reassign students based on their old groups, and a preference.
It contains:

* nbmodels option

e comparing solutions using the compare method

* Type, also one with the isa keyword

e Constant, with value

* Predicate

* Function

e Constraint

* Define

* minimization, using the Total term

#!/usr/bin/python3

mon

Testfile which attempts to assign students to a group, based on a previous
group and a preference.

from pathlib import Path

from pyidp3.typedIDP import =*

home = str (Path.home ())
idp = IDP (home+"/idp/usr/local/bin/idp")
idp.nbmodels = 5

All the inputvars

idp.Type ("Student", (1, 152))

idp.Type ("Number", (0, 10000000))
idp.Type ("Group", (2, 11))

idp.Type ("Priority", "Number", isa=True)
idp.Constant ("MinSize: Number", 14)
idp.Constant ("MaxSize: Number", 16)

together = [(142, 139, 2), (139, 143, 1), (139, 142, 1)]
not_together = [(142, 143, 2), (142, 141, 2), (142, 140, 2)]

(continues on next page)

3.7. further_group_assign 21

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

in_group = []

group_dict = {1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, T1: 8, 8: 9, 9: 10,
i0: 112, 11: 3, 12: 11, 13: 8, 14: 6, 15: 4, 16: 2, 17: 10,
18: 8, 19: 7, 20: 5, 21: 4, 22: 3, 23: 2, 24: 11, 25: 9,
26: 8, 27: 6, 28: 6, 29: 5, 30: 4, 31: 3, 32: 2, 33: 10,
34: 11, 35: 9, 36: 5, 37: 7, 38: 7, 39: 6, 40: 5, 41: 5,
42: 4, 43: 3, 44: 3, 45: 2, 46: 10, 47: 10, 48: 11, 49: 8,
50: 9, 51. 7, 52: 8, 53: 10, 54: 6, 55: o, 56: 5, 57: 5,
58: 5, 59: 4, 60: 4, 61: 3, 62: 3, 63: 2, 64: 2, 65: 10,
66: 7, 67: 10, 68: 11, 69: 11, 70: 9, 71: 9, 72: 8, 73: 8,
74: 7, 75: 7, 7T6: 6, 77: 6, 78: 6, 79: 9, 80: 5, 81: 5,
82: 4, 83: 4, 84: 4, 85: 3, 86: 3, 87: 3, 88: 2, 89: 2,
90: 2, 91: 2, 92: 10, 93: 11, 94: 10, 95: 8, 96: 11,
97: 11, 98: 9, 99: 9, 100: 9, 101: 9, 102: 8, 103: 8,
104: 8, 105: 7, 106: 7, 107: 7, 108: 6, 109: 6, 110: 6,
111: 6, 112: 5, 113: 5, 114: 5, 115: 5, 116: 4, 117: 4,
118: 4, 119: 4, 120: 4, 121: 3, 122: 3, 123: 3, 124: 3,
125: 2, 126: 2, 127: 2, 128: 2, 129: 11, 130: 10, 131: 10,
132: 10, 133: 10, 134: 10, 135: 11, 136: 11, 137: 11,
138: 11, 139: 9, 140: 9, 141: 9, 142: 9, 143: 9, 144: 8,
145: 8, 1l46: 8, 147:. 7, 148: 7, 149: 7, 150: 7, 151:
7, 152: 6}

idp.Function ("InGroup (Student): Group", group_dict)

idp.Predicate ("WantsTogether (Student, Student, Priority)", together)

idp.Predicate ("NotWantsTogether (Student, Student, Priority)", not_together)

idp.Predicate ("WantsInGroup (Student, Group, Priority)", in_group)

All the inner workings + output

idp.Function ("GroupSize (Group) : Number")

idp.Constant ("Total: Number")

idp.Constant ("TotUnsatTogether: Number")

idp.Constant ("TotUnsatNotTogether: Number")

idp.Constant ("TotUnsatInGroup: Number")

idp.Constant ("TotUnsatNewGroup: Number")

idp.Predicate ("UnsatTogether (Student, Student)")

idp.Predicate ("UnsatNotTogether (Student, Student)")

idp.Predicate ("UnsatInGroup (Student, Group)")

idp.Predicate ("UnsatNewGroup (Student) ")

idp.Function ("NewInGroup (Student) : Group")

All the necessary constraints

idp.Constraint ("!g[Group]: GroupSize(g) = #{x[Student]: NewInGroup(x) = g}",

idp.Constraint ("!g[Group] :
idp.Constraint ("TotUnsatNewGroup

idp.Constraint ("TotUnsatTogether

True)
MinSize =< GroupSize(g) =< MaxSize", True)
#{x[Student]: InGroup (x) ~= NewInGroup(x)}",

True)

sum{x [Student] y[Student]:"

" WantsTogether (x,y,p) & NewInGroup (x) ~= NewInGroup(y): p}",
True)

idp.Constraint ("TotUnsatNotTogether = sum{x[Student] y[Student]:"
" NotWantsTogether (x,v,p) & NewInGroup(x) = NewInGroup(y): p}",

True)

(continues on next page)

22

Chapter 3. Examples using the Pyidp3 API

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

idp.Constraint ("TotUnsatInGroup = sum{x[Student] g[Group]: WantsInGroup (x,g,p)"
" & NewInGroup(x) ~= g: p}", True)

idp.Constraint ("Total = TotUnsatTogether + TotUnsatNotTogether +"
" TotUnsatInGroup + TotUnsatNewGroup", True)

idp.Define ("!x[Student] y[Student]: UnsatTogether (x,y) <- WantsTogether (x,y,p)"

" & NewInGroup(x) ~= NewInGroup(y).", True)

idp.Define ("!x[Student] y[Student]: UnsatNotTogether (x,y) <- "
" NotWantsTogether (x,v,p) & NewInGroup (x) = NewInGroup(y).",
True)

idp.Define ("!x[Student]: UnsatNewGroup (x) <- InGroup (x) ~= NewInGroup (x).",
True)

idp.Define ("!x[Student] g[Group]: UnsatInGroup(x,g) <- WantsInGroup(x,g,p) &"
" NewInGroup (x) ~= g.", True)

sols = idp.minimize ("Total")

newgroups = []

for sol in sols:
newgroups.append (sol ['NewInGroup'])

print (newgroups)

print ("Verschil tussen sols:")

idp.compare (newgroups)

idp.compare (sols)

3.8 sudoku

Sudokusolver.
Contains:
¢ nbmodels option
* Type
e Constant, with value
e Predicate
* Function
* Constraint
* Define

* Modelexpansion

#!/usr/bin/python3

mmwn

This testfile solves a sudoku.

mwn

from pathlib import Path
from pyidp3.typedIDP import =

(continues on next page)

3.8. sudoku 23

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

home = str (Path.home ())
idp = IDP (home+"/idp/usr/local/bin/idp")
idp.nbmodels = 10

idp.Type ("Row", (1, 9))

idp.Type ("Column", (1, 9))
idp.Type ("Number", (1, 9))
start_numbers = [(1, 1, 8), (1, 1, 8),
(2, 3, 3), (2, 4, 6),
(3, 2, 7)), (3, 5, 9, (3, 7, 2),
(4, 2, 5, (4, 6, 1),
(5, 5, 4), (5, 6, 5, (5, 7, 1),
(6, 4, 1), (6, 8, 3),
(7, 3, 1), (7, 8, 6),
(7, 9, 8),
(8, 3, 8),
(8, 4, 5),
(8, 8, 1),
(9, 2, 9),
(9, 7, 4)]

idp.Predicate ("Square (Row, Column, Row, Column)")
idp.Predicate ("Start (Row, Column, Number)", start_numbers)
idp.Predicate ("Group (Row, Column, Row, Column)")
idp.Function("Solution (Row, Column): Number")

idp.Constraint ("!r[Row] c[Column] number: Start(r, c, number) =>"
"Solution(r, c¢) = number", True)
idp.Define("!rl1[Row] cl[Column] r2[Row] c2[Column]:"
"Square(rl,cl,r2,c2) <- rl- (rl-1)%3 ="
" r2 - (r2-1)%3 & cl-(cl-1)%3 = c2-(c2-1)%3",
True)
idp.Define("!rl1[Row] cl[Column] r2[Row] c2[Column]: Group(rl, cl, r2, c2) "

"<- Square(rl, cl, r2, c2).\n"
"Irl1[Row] r2[Row] c[Column]: Group(rl, ¢, r2, c) <— true.\n"

"!r[Row] cl[Row] c2[Column]: Group(r, cl, r, c2).", True)
idp.Constraint ("!rl[Row] cl[Column] r2[Row] c2[Column]: Group(rl, cl, r2, c2)"
"¢ (rl ~= r2 | ¢l ~= c2) => Solution(rl,cl) ~="

"Solution (r2,c2)", True)
idp.check_sat ()
sols = idp.model_expand ()
for index, sol in enumerate (sols):
if sol['satisfiable']:
print ("Sol{:d}: ".format (index), sol['Solution'])

3.9 masyu

Contains:
* Type, constructed_from

e Constant, with value

24 Chapter 3. Examples using the Pyidp3 API

Pyidp3 Documentation, Release 0.0.5

Predicate
Function
» Constraint
Define
Satchecking

Modelexpansion

#!/usr/bin/python3

mwn

This is by far the testfile with the most in it
It solves a masyu puzzle.

mwn

from pathlib import Path
from pyidp3.typedIDP import =

(yvet it's not the hardest!).

home = str (Path.home ())
idp = IDP (home+"/idp/usr/local/bin/idp")
idp.Type ("Row", (0, 4))
idp.Type ("Column", (0, 4))
idp.Type ("Pearl", ["Hollow", "Filled"], constructed_from=True)
idp.Type ("Wire", ["NS", "EW", "ES", "Ws", "NE", "NW", "Empty"],
constructed_from=True)
pearl_position = [(0, 2, "Filled"),
(1, 4, "Filled"),
(2, 2, "Filled"),
(3, 0, "Filled"), (3, 1, "Filled"),
(4, 4, "Hollow")]
idp.Predicate ("PearlPosition (Row, Column, Pearl)", pearl_position)
idp.Predicate ("WireStraight (Wire)", ["NS", "EW"])
idp.Predicate ("WireCurve (Wire)", ["ES", "wWsS", "NE", "NW"])
idp.Predicate ("WireNorth (Wire)", ["NS", "NE", "NW"])
idp.Predicate ("WireEast (Wire)", ["ES", "NE", "EW"])
idp.Predicate ("WireSouth (Wire)", ["NS", "WS", "ES"])
idp.Predicate ("WireWest (Wire)", ["EW", "WS", "NW"])
idp.Predicate ("Link (Row, Column, Row, Column)")
idp.Predicate ("Connected (Row, Column, Row, Column)")
idp.Function ("Solution (Row, Column): Wire")
idp.Constraint ("'!'r c: WireNorth (Solution(r,c)) => WireSouth (Solution(r-1,c))",
True)
idp.Constraint ("!r c: WireSouth (Solution(r,c)) => WireNorth (Solution(r+l,c))",
True)
idp.Constraint ("!r c: WireEast (Solution(r,c)) => WireWest (Solution(r,c+1))",
True)
idp.Constraint ("!r c: WireWest (Solution(r,c)) => WireEast (Solution(r,c-1))",
True)
idp.Constraint ("!r c parel: PearlPosition(r,c,parel) & parel = Hollow => "
"WireCurve (Solution(r,c))", True)
idp.Constraint ("!r c parel: PearlPosition(r,c,parel) & parel = Filled => "
"WireStraight (Solution(r,c))", True)
(continues on next page)
3.9. masyu 25

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

idp.Constraint ("!r c parel: PearlPosition(r,c,parel) & parel = Hollow & "
"WireNorth (Solution(r,c)) => WireStraight (Solution(r-1,c))",
True)
idp.Constraint ("!r c parel: PearlPosition(r,c,parel) & parel = Hollow & "
"WireSouth (Solution(r,c)) => WireStraight (Solution(r+1l,c))",
True)
idp.Constraint ("!r c parel: PearlPosition(r,c,parel) & parel = Hollow & "
"WireEast (Solution(r,c)) => WireStraight (Solution(r,c+1))",
True)
idp.Constraint ("!r ¢ parel: PearlPosition(r,c,parel) & parel = Hollow & "
"WireWest (Solution(r,c)) => WireStraight (Solution(r,c-1))",
True)
idp.Constraint ("!r c parel: PearlPosition(r,c,parel) & parel = Filled & "
"WireNorth (Solution(r,c)) => (WireCurve (Solution(r-1,c)) | "
"WireCurve (Solution(r+l,c)))", True)
idp.Constraint ("!r ¢ parel: PearlPosition(r,c,parel) & parel = Filled & "
"WireEast (Solution(r,c)) => (WireCurve (Solution(r,c-1)) | "
"WireCurve (Solution(r,c+1)))", True)
idp.Constraint ("!rl cl r2 c2: (Solution(rl,cl) ~= Empty & Solution(r2,c2) ~= "
"Empty) => Connected(rl,cl,r2,c2)", True)
idp.Define("!r c: Link(r,c,r-1,c) <- WireNorth(Solution(r,c)) & "
"WireSouth (Solution(r-1,c)). "
"!r ¢: Link(r,c,r+l,c) <- WireSouth(Solution(r,c)) & "
"WireNorth (Solution(r+l,c)). "
"!r c¢: Link(r,c,r,c+l) <- WireEast (Solution(r,c)) & "
"WireWest (Solution(xr,c+1)). "
"!r c¢: Link(r,c,r,c-1) <—- WireWest (Solution(r,c)) &"
"WireEast (Solution(r,c-1)).", True)
idp.Define("!rl cl r2 c2: Connected(rl,cl,r2,c2) <- Link(rl,cl,r2,c2). "
"!rl ¢l r2 c2: Connected(rl,cl,r2,c2) <- ?2r3 k3: "
"Connected (r3,k3,r2,c2) & Connected(rl,cl,r3,k3). ", True)

idp.check_sat ()
idp.model_expand()

26 Chapter 3. Examples using the Pyidp3 API

CHAPTER 4

Porting of Pyidp to Pyidp3

* Firstly Python’s own 2to3 was used for the initial port. This is a tool to automagically convert from Python2 to
Python3. This produces a log of the changes made, which can be found at the bottom of this page.

* The way popen works was changed to only accept byte objects (and it doesn’t convert them automatically), so
I had make sure all input was encoded first, and all output was decoded afterwards. This can be done easily by

using the encode() and decode() methods.

That’s it. Using these two simple tricks, I was able to convert Pyidp to work on Python3 (Doctors hate him!). After
porting, features were added, QOL was improved and bugs were squashed. More on that can be found at Pyidp3

features.
——— idpobjects.py (original)
+++ idpobjects.py (refactored)

@@ -55,7 +55,7 @@

def product_of_types(self):
import itertools
- types = map(lambda x: getattr(self.idp,x), self.typing)
+ types = [getattr(self.idp,x) for x in self.typing]
return itertools.product (xtypes)

class IDPEnumeratedObject (IDPVocabularyObject) :
@@ -96,7 +96,7 Q@

def product_of_types(self):
import itertools
- types = map(lambda x: getattr(self.idp,x), self.typing)
+ types = [getattr(self.idp,x) for x in self.typing]
return itertools.product (xtypes)

@property
@@ -162,7 +162,7 @@
IDPGeneratedObject.__init__ (self,idp, name, args, impl)

def _ _getitem__ (self, key):

(continues on next page)

27

https://docs.python.org/3.7/library/2to3.html

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

- args = map(self.idp.object_for_name, key)
+ args list (map(self.idp.object_for_name, key))
try:
res = self.implementation (args)
except AttributeError:
@@ -275,4 +275,4 Q@@
self.rules = rule_list

def in_theory(self):

- return "{\n" + "\n".Jjoin (map(lambda x: x.in_theory (), self.rules)) + "\n}"
+ return "{\n" + "\n".join([x.in_theory() for x in self.rules]) + "\n}"

——— 1idp_parse_out.py (original)

+++ idp_parse_out.py (refactored)

@@ -126,7 +126,7 Q@
def parse_tuple (tup) :
tup = tup.strip/()
elements = tup.split(',")
- parsed = map (parse_element, elements)
+ parsed = list (map (parse_element, elements))
if len(parsed) ==
return parsed[0]
return tuple (parsed)
@@ -144,7 +144,7 @@
def parse_enumeration(s):
s = s.strip()
elements = s.split(';")
- parsed = map (parse_enumerated, elements)
+ parsed = list (map (parse_enumerated, elements))
if "->" in s: # Function
return dict (parsed)
else: # Predicate
@@ -153,7 +153,7 @@
def parse_range(s):
s = s.strip()
low, up = s.split('..")
- return range (int (low), int (up))
+ return list (range (int (low), int (up)))

def parse_contents(s):
stripped = s.strip() .lstrip('{").rstrip('}").strip()

——— 1idp_py_syntax.py (original)
+++ idp_py_syntax.py (refactored)
@@ -44,7 +44,7 @@

self.formula = formula

def _ str_ (self):

- var_tuple = flatten(map(lambda x: x[0], self.vars))
+ var_tuple = flatten([x[0] for x in self.vars])
it = (" ".join(var_tuple) + ": " +
" & ".join (map(tuple_to_atom, self.vars)))
if self.agg == "card":
@@ -63,10 +63,10 @@
symbols = "4-x%/""
return " (" + x + ")" if any([(s in x) for s in symbols]) else x
if self.symbol == "/":

- (1,r) = map(lambda x: add_pars(str(x)), self.children)
+ (1,r) [add_pars(str(x)) for x in self.children]

(continues on next page)

28 Chapter 4. Porting of Pyidp to Pyidp3

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

return "(" + 1 + "-" + 1 + "$" 4+ r 4+ ") /" + r
else:
- return (" " + self.symbol + " ").join(map(lambda x: add_pars(str(x)),.
—wself.children))
+ return (" " + self.symbol + " ").join([add_pars(str(x)) for x in self.

—children])

class BooleanFormula (Formula) :

@@ -75,7 +75,7 Q@
self.children = children

def _ str_ (self):

— return (" " + self.symbol + " ").join(map (lambda x: " (" + str(x) + ")", self.
—children))

+ return (" " + self.symbol + " ").join([" (" + str(x) + ")" for x in self.
—children])

class UnaryFormula (Formula) :

@@ -100,7 +100,7 @@
return "&"

def _ str_ (self):
- var_tuple = flatten (map(lambda x: x[0], self.vars))
+ var_tuple = flatten([x[0] for x in self.vars])
return (self.kind + " " + " "_ join(var_tuple) + ": " +
" & ".join(map (tuple_to_atom, self.vars)) +
self.guard_sym() + " "+ str(self.formula))
@@ -179,7 +179,7 @@
return UnaryFormula (symb, self.visit (node.operand))

def visit_Tuple(self, node):
- return tuple (map (lambda x: self.visit(x), node.elts))
+ return tuple([self.visit(x) for x in node.elts])

def visit_GeneratorExp(self,node) :
return self.visit_ListComp (node)
@@ -199,7 +199,7 @@

sympb = "?" if func == "any" else "!"
return QuantifiedFormula (symb, =*self.visit (node.args[0]))
aggregates = { 'sum' : 'sum', 'len' : 'card', 'product' : 'prod', 'max'
—'max', 'min' : 'min' }
- if func in aggregates.keys{():
+ if func in list (aggregates.keys()):
return AggregateFormula (aggregates[func], #*self.visit (node.args[0]))
return str (func) + "(" + ", ".Jjoin(map(str, [self.visit(arg) for arg in_

—node.args])) + ")"

—-—— test.py (original)

+++ test.py (refactored)

@e -1,11 +1,11 @e@
#!/usr/bin/python3

—from typedIDP import =«

+from .typedIDP import =«

(continues on next page)

29

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

idp = IDP('/home/saltfactory/Documents/Masterproef/IDP/idp3-3.7.1-Linux/usr/local/
—bin/idp")

—-idp.Type ("Student", range (int (5)))
—idp.Type ("Groepnummer", range (int (1)))
(

+idp.Type ("Student", list (range (int (5))))
+idp.Type ("Groepnummer", list (range (int (1))))
idp.Function ("InGroep (Student) : Groepnummer")
idp.Constraint (""" !groep|[Groepnummer]: #{student[Student]:
InGroep (student) = groep} =< """ + str(10),True)
—-—— typedIDP.py (original)
+++ typedIDP.py (refactored)
@R -1,8 +1,9 @@
IDP_LOCATION = "/home/saltfactory/Documents/Masterproef/IDP/idp3-3.7.1-Linux/usr/
—local/bin/idp"

—from idp py_ syntax import parse_formula
—from idpobjects import =«

+from .idp_py_syntax import parse_formula
+

+from .idpobjects import =x

+from functools import reduce

class Block (object) :

@@ -56,7 +57,7 @@
return "vocabulary " + self.name

def subclasses(cls):

- return reduce(lambda x,y: x + y, map(lambda x: subclasses(x) + [x], cls.__
—subclasses_ ()), [1)

+ return reduce (lambda x,y: x + y, [subclasses(x) + [x] for x in cls.__subclasses___
01, [1)

class IDP (object):

@@ -103,7 +104,7 @@
#1f the second argument 'enumeration' is given, then the Type is an int
#else, it's left blank
def Type(self, name, enumeration):
— if len(enumeration) > 0 and all([isinstance(x, (int,int)) for x in_
—enumerationl]) :

+ if len(enumeration) > 0 and all([isinstance(x, int) for x in enumeration]):
res = IDPIntType(self, name, enumeration)
else:
res = IDPType (self, name, enumeration)

@@ -166,7 +167,7 @@
return str (thing)

def assign_name(self, object_):

- if isinstance(object_, (int,int,str,bool,float)): # Primitive type
+ if isinstance(object_, (int,str,bool,float)): # Primitive type
return object_
name = "o" + str(id(object_))
self.object_names[name] = object_

@@ -222,7 +223,7 @@

(continues on next page)

30 Chapter 4. Porting of Pyidp to Pyidp3

Pyidp3 Documentation, Release 0.0.5

(continued from previous page)

self.know(old_class (old.typedName, new))

def _ str__ (self):
- return "\n".join (map (lambda bl: bl.show(self.idpobjects.values()), self.
—blocks)) + "\n" + IDP.gen_models + "\n"
+ return "\n".join([bl.show(list (self.idpobjects.values())) for bl in self.
—blocks]) + "\n" + IDP.gen_models + "\n"

def fillIn(self, pred):
if self.dirty:
@@ -272,13 +273,13 @@
print ("GOT OUTPUT:")
print (out)
print ("END OF IDP OUTPUT")
- import idp_parse_out

+ from . import idp_parse_out
if out.strip() == "nil":
print ("UNSATISFIABLE!")
self.cache = {'satisfiable' : []}
else:
self.Predicate ("satisfiable", [()])
- self.cache = idp_parse_out.idp_parse (out, map(lambda x: x.name, self.
—wanted))
+ self.cache = idp_parse_out.idp_parse(out, [x.name for x in self.wanted])

self.dirty = False

def checkSat (self):
@@ -297,8 +298,8 @@
out,err = idp.communicate (input=str (script))

if _ debug__:

- print ("err:" + err)

- print ("out:" + out)

+ print (("err:" + err))

+ print (("out:" + out))
#check wether the output is true or false
if out.find("true") != -1:

return True
@@ -343,7 +344,7 Q@@
def type (idp) :
def foo(cls):

clsname = cls.__ name__
- for name, method in cls. dict_ .iteritems|():
+ for name, method in cls. dict .items{():

if hasattr(method, "_idp_return_type"):
rt = getattr (method, "_idp_return_type")
if isinstance(rt, str):

31

Pyidp3 Documentation, Release 0.0.5

32

Chapter 4. Porting of Pyidp to Pyidp3

CHAPTER B

The Pyidp3 API reference

This page contains the API reference for Pyidp3. This is an entirely autogenerated page, based on the docstring that
are inside the code. Some things might be wrong, or might be outdated. If you find any of such things, let me know
and I'll fix them (or make a pullrequest).

As the entire layout can be a bit awkward, I also autogenerated UML diagrams. This is the package structure:

images/packages.png

And this is the entire class structure, with only the classnames:

images/classes.png

For an overview of the entire class structure with methods and attributes, check the bottom of this page.

5.1 The typedIDP submodule:

This is the main, toplevel submodule and contains everything a normal user would need.

class pyidp3.typedIDP.Block (name)
An abstract superclass for the editable blocks. Should never be explicitly instantiated, but there’s no elegant
way to enforce abstraction in python3. These editable blocks consist of: * Theory; * Structure; * Vocabulary; *
Term.

33

Pyidp3 Documentation, Release 0.0.5

There is no Main block, see further.
Raises Not ImplementedError — some of the methods need to be implemented by the subclass.

begin ()
Generates the beginning of a Blockstring. This is just an opening bracket and enter for all blocktypes.

Returns the begin of a block in IDP-form.
Return type str

content (objects)
Creates the actual content of the block, based on what it contains.

Parameters objects (TODO) - TODO
Returns the content of the objects in IDP-form.
Return type str

end ()

The ending of a Blockstring. This is the same for all the blocktypes. Consists of a closing bracket and a
couple of enters.

Returns the ending of a block in IDP-form.
Return type str

header ()
The default header raises an error if it isn’t overwritten.

Raises NotImplementedError —if it’s not overwritten.
method ()

Returns todo

Return type str

show (objects=None)
Function to fully generate a Block in IDP-interpretable string. Every block consists of a header, a begin
section, a section containing objects, and an end.

The only Block without an ‘objects’ variable is the Term block.
Parameters objects (TODO) - TODO
Returns the block in IDP-form.
Return type str

class pyidp3.typedIDP.IDP (executable="~/idp/usr/local/bin/idp’)
A class containing everything needed to ‘use’ the IDP system. It allows adding and removing new constraints,
functions, relations, ... which it can then convert into a usable IDP script. This script can be piped into the idp
executable, whose path is supplied in the init. The output can then be decoded and turned back into Pythonic
data structures. This allows for a full interface in Python, and theoretically no much knowledge of IDP is needed.
Although, it is possible (and in my opinion preferred) to supply most of the idpobjects already in IDP format,
which requires IDP knowledges but removes the danger of converting Python to IDP.

Constant (typed_name, enumeration=None)
Adds a constant.

Parameters
* typed_name (str) - the name of the constant, in IDP format.

* enumeration - this is currently not used. TODO: FIX!

34 Chapter 5. The Pyidp3 API reference

Pyidp3 Documentation, Release 0.0.5

e enumeration - list of values
Returns the constant itself
Return type Function

Constraint (formula, already_IDP=False)
Adds a constraint. There are two types of constraint:

1. Constraints with formula in the Python form;
2. Constraints with formula in the IDP form.

In the second case, the formula doesn’t need to be parsed into the IDP form. This is a ‘safer’ way of
programming, but it requires more knowledge of the IDP system. In the first case, the Python form needs
to be parsed into the IDP form. This is done by passing it on to the parse_formula function.

Parameters

e formula (str) — the formula in either Python or IDP form

* already_IDP (bool)—abool to flag what form the formula is in
Returns an IDP object
Return type /DPConstraint

Define (*args)
Method to make a definition. It can be called as “Define(Head,Body)” for a definition with only one
rule, or it could be called as “Define([(H1,B1), (H2,B2), ...])” for definitions with multiple rules. As last
argument, a “already_idp” flag could be passed. This function is a bit experimental, best to format it as
IDP and use the ‘already_idp’ flag.

Parameters
¢ head (str) — the head of the rule
* body (str) — the body of the rule
* already_idp - flag of whether it’s in the correct form or not
type already_idp: bool
OR
Parameters list (1ist of tuples)—tuples of heads and bodies
Returns the definition in IDP form
Return type IDPDefinition
Function (typed_name, enumeration=None, partial=False)
Adds a function. This function is either:
* Empty;
* Completely filled;

 Partial (not advised).

Parameters
* typed_name (str) — the name of the function, in IDP format
* enumeration (dictionary) — dictionary containing the values of the function

* partial - flag to make partial function (not advised)

5.1.

The typedIDP submodule: 35

Pyidp3 Documentation, Release 0.0.5

Partial bool

Returns an IDPEnumeratedFunction or IDPUnkownFunction object

Example:

Function(“Weight(Penalty): Number”, [penalty1:5, penalty2:15, penalty3:30])
would be formatted to:

Weight(Penalty) = {penalty1->5, penalty2->15, penalty3->30}

GeneratedFunction (fyped_name, impl)
TODO: Document this! >:(

GeneratedPartialFunction (typed_name, impl)
TODO: Document this! >:(

Predicate (typed_name, enumeration=None, ct=False)
Adds a predicate. It can either be empty, or already (partially) filled.

Parameters
* typed_name (str)—name of the predicate in IDP format
* enumeration — an x-dimensional array containing the data.

x needs to equal to the amount of variables there are in the IDP formatted predicate :type enumeration:
list of str, int, float, ... :returns: the Predicate in a datastructure :rtype: IDPEnumeratedPredicate or
IDPUnknownPredicate

Example:: Predicate(“IconicDuo(Character,Character)”, [[“Harry”,’Sally”], [“Bonny”,”Clyde”]]
would result in:: “IconicDuo(Charachter,Character) = {(Harry,Sally); (Bonny,Clyde)}”

Type (name, enumeration, constructed_from=False, isa=None)
Adds a type. The type can be int or stringbased. The enumeration needs to be supplied as a list, or a tuple.
As for right now, string should be supplied with extra quotation marks.

The int can be supplied as a list of ints or as a tuple of ints. A tuple can be used to set a range of values,
and will be translated as such.

Example Type(Example, (0,10)) -> Example = {0..10} Type(Example, list(range(0,10))) -> Ex-
ample=(0,1,2,3,4,5,6,7,8,9, 10}

Parameters
* name — the name of the Type
* enumeration - a one-dimensional list containing all possible

values of the Type. :param constructed_from: allows the Type to have ‘constructed_from’. TODO: Add
this! :type name: str :type enumeration: list of int, string, float, ... :type constructed_from: list of int,
string, float, ... :returns: IDPIntType or IDPType object

append (p)
Adds objects into the idpobjecst dictionary. These objects are:
¢ IDPPredicate, IDPUnknownPredicate
* IDPType, IDPInt
¢ IDPUnknownFunction, IDPEnumeratedFunction

* Function

36 Chapter 5. The Pyidp3 API reference

Pyidp3 Documentation, Release 0.0.5

¢ IDPGeneratedFunction
¢ IDPGeneratedPartialFunction
¢ IDPDefinition

Parameters p (see above) — one of the above listed objects
check_sat ()

Checks the satisfiability of the current IDP system.

check_sat_script ()
Generates .idp file to check if the model is satisfiable.

Returns A script readable by IDP.
Return type str

customScript (main, term="")
Generates a .idp file with a custom main. Works by adding a custom Mainblock to the other blocks.
Optionally, a term to minimize can also be added. The Term needs to be preformatted Term string.

Returns A custom script readable by IDP.
Return type str
Raises ValueError when the supplied term isn’t str

forget (0ld)
Delete an object from the idpobjects dictionary, and also from the wanted list if it was found there.

Parameters old (an idpobject) — the idpobject to remove

init_options ()
This method initialises all the options. They all start as None-values (safe for xsb and nbrmodels)

know (p)
Adds objects into the idpobject dictionary, and returns the object. These objects are:

¢ IDPPredicate, IDPUnknownPredicate

¢ IDPType, IDPInt

¢ IDPUnknownFunction, IDPEnumeratedFunction
 Function

* IDPGeneratedFunction

* IDPGeneratedPartialFunction

¢ IDPDefinition

Parameters p (see above)— one of the above listed objects

Returns the object which was added to the dictionary

minimize (ferm, ssh=False, remote_idp_location=None, known_hosts_location=None, address=None,

username=None, password=None)
Run the IDPsystem’s minimize and read its output. Works by piping to input to the IDP executable, and

reading the output. Once this command has been run, the idp object should have new attributes in the same
name of the constants/functions/relations/. .., which should be readable in Python.

For example, a function called ‘Group’ should now be accessible by fetching the ‘Group’ attribute of the
IDP object.

5.1. The typedIDP submodule: 37

Pyidp3 Documentation, Release 0.0.5

Parameters
e term (bool) - the content of the term block, in IDP-form
¢ ssh — Can be used to run IDP over SSH

minimize_script (termblock)
Generates the script for basic minimization of a term. Works by adding a Term and a Main block to the
other blocks. More specifically: a Main block containing the ‘minimize’ function. The Term block needs
to be called ‘t’ and needs to use Vocabulary ‘V’ for it to work. By default a voc is always called V, so this
is no problem.

Returns A script readable by IDP for term minimization.
Return type str

modelexpand_script ()
Generates the IDP-ready script for basic modelgeneration. Works by adding a Main block to all the other
blocks. More specifically: a Main block containing the ‘generate’ IDP function.

Returns A fullfledged IDP-readable script for modelgeneration.
Return type str

printunsatcore (timeout=0)
Call printunsatcore on the IDP object and return the unsat core. The call will end early after timeout
seconds. (default: 0 = no timeout)

refresh ()
Run the IDPsystem’s modelgeneration and read its output. Works by piping to input to the IDP executable,
and reading the output. Once this command has been run, the idp object should have new attributes in the
same name of the constants/functions/relations/. . ., which should be readable in Python.

For example, a function called ‘Group’ should now be accessible by fetching the ‘Group’ attribute of the
IDP object. :Example:

grouparray = IDP.Group

static split_func_name (func_name)
Static method to split a function. Splits a Function name into two parts: the function, and the Type it maps
on (the return_type).

Example Foo(bar): baz would be split in “Foo(bar)” and “baz”.

static split_pred_name (pred_name)
Static method to split a predicate. Splits a predicate in two parts: the name of the predicate, and the type it
holds.

Example Foo(bar,baz) would be split in “Foo” and “[bar, baz]”

class pyidp3.typedIDP.Structure (name, voc)

A class for the Structure block, which is a subclass of Block. It adds the voc-attribute, and overwrites the header.
Inherits Block

header ()
Generates the specific header for a Structure.

Returns the header, in IDP-form.

Return type str

class pyidp3.typedIDP.Term (term, voc="V’)

A class for the Term block, which is a subclass of Block. It adds a term attribute, (a string containing the content
of the Term block) and overwrites the header and the content methods.

38

Chapter 5. The Pyidp3 API reference

Pyidp3 Documentation, Release 0.0.5

content ()
Term has a specific content, which is just the self.term (cause it’s already in IDP format). This is between
two linefeeds.

Returns the termcontent as it was initialized (self.term)
Return type str

header ()
The specific header for a Term.

Returns the Termblock turned into IDP format
Return type str

class pyidp3.typedIDP.Theory (name, voc)
A class for the Theory block, which is a subclass of Block. It changes the voc-attribute, and overwrites the
header.

Inherits Block

header ()
The specific header for a Theory, the only variables are the Theoryname and the Vocabularyname.

For Theory T and Vocabulary V, the string looks like: ‘theory T: V °

Returns the header of the Theory, in IDP-form.
Return type str
class pyidp3.typedIDP.Vocabulary (name)

A class for the Vocabulary block, which is a subclass of Block. It overwrites the header. Uses Block’s __init__
method.

header ()
Generates the specific header for a Vocabulary.

Returns the header, in IDP-form.
Return type str

pyidp3.typedIDP.subclasses (cls)
TODO: describe

5.2 The idpobjects submodule:

This submodule contains an object for every kind of idp object.

This file contains all the IDP objects.

class pyidp3.idpobjects.IDPConstraint (idp, formula)

class pyidp3.idpobjects.IDPConstructedType (idp, name, enum, ct=False)

class pyidp3.idpobjects.IDPDefinition (idp, rule_list)

class pyidp3.idpobjects.IDPEmptyConstantFunction (idp, name, args, rt, partial=False)

class pyidp3.idpobjects.IDPEnumeratedFunction (idp, name, args, rt, enum, partial=False,
ct=Fualse)

class pyidp3.idpobjects.IDPEnumeratedObject (idp, name, typing, enum, ct)

5.2. The idpobjects submodule: 39

Pyidp3 Documentation, Release 0.0.5

class pyidp3.idpobjects.IDPEnumeratedPredicate (idp, name, typing, enum, ct)

add (x)
Add an element.

discard (x)
Remove an element. Do not raise an exception if absent.

class
class
class
class
class
class
class
class

class

pyidp3

pyidp3.
pyidp3.
pyidp3.
pyidp3.
pyidp3.
pyidp3.
pyidp3.

pyidp3

.idpobjects

idpobjects

.idpobjects

idpobjects.
idpobjects.
idpobjects.
idpobjects.
idpobjects.

idpobjects.

. IDPFloatRangeType (idp, name, enum, ct=False)

. IDPFloatType (idp, name, enum, ct=False)

IDPFunction (idp, name, types, return_type, partial=False, ct=False)
IDPGeneratedFunction (idp, name, args, rt, impl, partial=False)
IDPGeneratedObject (*args)
IDPGeneratedPredicate (*args)
IDPIntRangeType (idp, name, enum, ct=False)
IDPIntType (idp, name, enum, ct=False)

. IDPObject (idp)

‘Abstract’ class for all the IDP objects. Initialises idp.

class
class
class
class
class
class
class
class
class

class

class

pyidp3

pyidp3.
pyidp3.
pyidp3.
pyidp3.
pyidp3.
pyidp3.
pyidp3.
pyidp3.
pyidp3.

pyidp3

.idpobjects

idpobjects

.idpobjects

idpobjects.
idpobjects.
idpobjects.
idpobjects.
idpobjects.
idpobjects.
idpobjects.

idpobjects.

. IDPPredicate (idp, name, typing, ct=False)

. IDPRule (idp, head_pred, vars_, body)

IDPRuleStr (idp, string)
IDPSpecialType (idp, name, enum, ct=False)
IDPTheoryObiject (idp)

IDPType (idp, name, enum, ct=False)
IDPUnknownFunction (idp, name, args, rt, partial=False, ct=False)
IDPUnknownObiject (idp, name, typing, enum, ct)
IDPUnknownPredicate (idp, name, types)

IDPValueConstantFunction (idp, name, args, rt, enumeration, par-
tial=False)

. IDPVocabularyObiject (idp, name, typing, ct=False)

Abstract class for all the objects that appear in a vocabulary.

in_theory ()
Doesn’t show up in a theory, so returns empty string.

5.3 The idp_py_syntax submodule:

This submodule contains everything needed to convert Pythonic data to IDP. This is something that was support by
the original Pyidp, but is no longer supported by Pyidp3. The code might still work, it’s just not being worked on.

class pyidp3.idp_py_syntax.FormulaBuilder

generic_visit (node)
Called if no explicit visitor function exists for a node.

40

Chapter 5. The Pyidp3 API reference

Pyidp3 Documentation, Release 0.0.5

5.4 The idp_parse_out submodule:

This submodule contains all the code necessary to read IDP output and convert it to Python.

images/classes_full.png

5.4. The idp_parse_out submodule: 41

Pyidp3 Documentation, Release 0.0.5

42

Chapter 5. The Pyidp3 API reference

Python Module Index

P

pyidp3, 33
pyidp3.idp_parse_out, 41
pyidp3.idp_py_syntax, 40
pyidp3.idpobjects, 39
pyidp3.typedIDP, 33

43

Pyidp3 Documentation, Release 0.0.5

44

Python Module Index

Index

A

add () (pyidp3.idpobjects.IDPEnumeratedPredicate
method), 40

append () (pyidp3.typedIDP.IDP method), 36

B

begin () (pyidp3.typedIDP.Block method), 34
Block (class in pyidp3.typedIDP), 33

C

check_sat () (pyidp3.typedIDP.IDP method), 37
check_sat_script () (pyidp3.typedIDP.IDP
method), 37
Constant () (pyidp3.typedIDPIDP method), 34
Constraint () (pyidp3.typedIDP.IDP method), 35
content () (pyidp3.typedIDP.Block method), 34
content () (pyidp3.typedIDP.Term method), 38
customScript () (pyidp3.typedIDP.IDP method), 37

D

Define () (pyidp3.typedIDPIDP method), 35
discard () (pyidp3.idpobjects.IDPEnumeratedPredicate

method), 40
E
end () (pyidp3.typedIDP.Block method), 34
F

forget () (pyidp3.typedIDP.IDP method), 37
FormulaBuilder (class in pyidp3.idp_py_syntax), 40
Function () (pyidp3.typedIDP.IDP method), 35

G

GeneratedFunction ()
method), 36

GeneratedPartialFunction ()
(pyidp3.typedIDP.IDP method), 36

(pyidp3.typedIDP.IDP

H

header () (pyidp3.typedIDP.Block method), 34
header () (pyidp3.typedIDP.Structure method), 38
header () (pyidp3.typedIDP.Term method), 39
header () (pyidp3.typedIDP.Theory method), 39
header () (pyidp3.typedIDP.Vocabulary method), 39

IDP (class in pyidp3.typedIDP), 34

IDPConstraint (class in pyidp3.idpobjects), 39

IDPConstructedType (class in pyidp3.idpobjects),
39

IDPDefinition (class in pyidp3.idpobjects), 39

IDPEmptyConstantFunction (class in
pyidp3.idpobjects), 39
IDPEnumeratedFunction (class in

pyidp3.idpobjects), 39
IDPEnumeratedObject (class in pyidp3.idpobjects),
39
IDPEnumeratedPredicate
pyidp3.idpobjects), 39
IDPFloatRangeType (class in pyidp3.idpobjects), 40
IDPFloatType (class in pyidp3.idpobjects), 40
IDPFunction (class in pyidp3.idpobjects), 40
IDPGeneratedFunction (class
pyidp3.idpobjects), 40
IDPGeneratedObject (class in pyidp3.idpobjects),
40
IDPGeneratedPredicate
pyidp3.idpobjects), 40
IDPIntRangeType (class in pyidp3.idpobjects), 40
IDPIntType (class in pyidp3.idpobjects), 40
IDPObject (class in pyidp3.idpobjects), 40
IDPPredicate (class in pyidp3.idpobjects), 40
IDPRule (class in pyidp3.idpobjects), 40
IDPRuleStr (class in pyidp3.idpobjects), 40
IDPSpecialType (class in pyidp3.idpobjects), 40
TDPTheoryObject (class in pyidp3.idpobjects), 40

in

(class

in

(class

generic_visit () (pyidpS.idp_py_syntax.FormulaBuildff)PType (class in pyidp3.idpobjects), 40

method), 40

45

Pyidp3 Documentation, Release 0.0.5

IDPUnknownFunction (class in pyidp3.idpobjects),
40

IDPUnknownObject (class in pyidp3.idpobjects), 40

IDPUnknownPredicate (class in pyidp3.idpobjects),
40

IDPValueConstantFunction (class in
pyidp3.idpobjects), 40

IDPVocabularyObject (class in pyidp3.idpobjects),
40

in_theory () (pyidp3.idpobjects.IDPVocabularyObject
method), 40

init_options () (pyidp3.typedIDPIDP method), 37

K

know () (pyidp3.typedIDPIDP method), 37

M

method () (pyidp3.typedIDP.Block method), 34
minimize () (pyidp3.typedIDP.IDP method), 37

minimize_script () (pyidp3.typedIDP.IDP
method), 38

modelexpand_script () (pyidp3.typedIDP.IDP
method), 38

P

Predicate () (pyidp3.typedIDPIDP method), 36

printunsatcore () (pyidp3.typedIDPIDP method),
38

pyidp3 (module), 33

pyidp3.idp_parse_out (module), 41

pyidp3.idp_py_syntax (module), 40

pyidp3.idpobjects (module), 39

pyidp3.typedIDP (module), 33

R

refresh () (pyidp3.typedIDP.IDP method), 38

S

show () (pyidp3.typedIDP.Block method), 34

split_func_name () (pyidp3.typedIDPIDP static
method), 38

split_pred_name () (pyidp3.typedIDPIDP static
method), 38

Structure (class in pyidp3.typedIDP), 38

subclasses () (in module pyidp3.typedIDP), 39

T

Term (class in pyidp3.typedIDP), 38
Theory (class in pyidp3.typedIDP), 39
Type () (pyidp3.typedIDP.IDP method), 36

\Y

Vocabulary (class in pyidp3.typedIDP), 39

46

Index

	Pyidp3 features
	Existing features from Pyidp
	Added features in Pyidp3
	Added QOL in Pyidp3:
	Fixed bugs:

	Basic Tutorial
	Requirements
	Tutorial

	Examples using the Pyidp3 API
	simple_inference
	harder_inference
	definition_test
	constructed_from
	initial_group_assign
	initial_group_assign_plus
	further_group_assign
	sudoku
	masyu

	Porting of Pyidp to Pyidp3
	The Pyidp3 API reference
	The typedIDP submodule:
	The idpobjects submodule:
	The idp_py_syntax submodule:
	The idp_parse_out submodule:

	Python Module Index
	Index

